A nonlinear elastic approach to modelling the hydro-mechanical behaviour of the SEALEX experiments on compacted MX-80 bentonite

نویسندگان

  • A. P. Fraser Harris
  • C. I. McDermott
  • A. E. Bond
  • K. Thatcher
  • S. Norris
چکیده

Hydraulic seals using compacted sand–bentonite blocks are an important part of the closure phase of deep geological disposal facilities for the isolation of many categories of radioactive wastes. An understanding of the hydromechanical behaviour of these seals and the ability to model their behaviour is a key contribution to safety cases and licence applications. This work reports the development of a hydro-mechanically coupled model and its application to the simulation of a range of test conditions investigated in the SEALEX experiments conducted by IRSN at Tournemire URL. The work has been conducted as part of the recently completed DECOVALEX-2015 project. Richards’ equation for unsaturated fluid flow is coupled to a nonlinear elastic strain-dependent mechanical model that incorporates a moving finite element mesh, and calibrated against laboratory experiments. Stress and volumetric dependencies of the water retention behaviour are incorporated through the Dueck suction concept extended to take into account permanent changes in water retention behaviour during consolidation. Plastic collapse in laboratory results is modelled with the application of a source term activated by a threshold defined in terms of the net axial stress and net suction. The model is used to simulate both a 1/10 scale mock-up laboratory test and full-scale in situ performance test and is capable of reproducing the major trends in the data with just nine mechanical parameters and an experimentally defined

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a new non-linear elastic hydro-mechanical model for the simulation of compacted MX-80 bentonite: application to laboratory and in situ sealing experiments for geo-repository engineered barriers

The management of radioactive wastes is a significant environmental issue facing the international nuclear community today. The current international consensus is for disposal of higher activity waste from a variety of sources in deep geological disposal facilities (GDFs). Hydraulic seals, often planned to consist of compacted bentonite-sand blocks, are an important part of the closure phase of...

متن کامل

Porewater chemistry in compacted re-saturated MX-80 bentonite.

Bentonites of various types are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Being able to understand the chemistry of the porewater in compacted bentonite is very important since it is critical to predicting radionuclide solubilities and to the synthesis of sorption data bases, and hence to repository safety studies. In this pape...

متن کامل

Extraction of Nonlinear Thermo-Electroelastic Equations for High Frequency Vibrations of Piezoelectric Resonators with Initial Static Biases

In this paper, the general case of an anisotropic thermo-electro elastic body subjected to static biasing fields is considered. The biasing fields may be introduced by heat flux, body forces, external surface tractions, and electric fields. By introducing proper thermodynamic functions and employing variational principle for a thermo-electro elastic body, the nonlinear constitutive relations an...

متن کامل

Thermo-hydro-mechanical Coupling in Clay Barriers

A complete thermo-hydro-mechanical model is presented to tackle the complex coupling problems encountered in clay barriers. A detailed formulation coupling the heat, moisture (liquid water and water vapour) and, air transfer in a deformable unsaturated soil is given. The formulation of the AlonsoGens’s mechanical model for unsaturated soil is also incorporated. The sensitivity to some parameter...

متن کامل

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016